Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Lesedauer 4 Min.

Warum die KI am liebsten Englisch spricht

Ob Sprachsteuerung, Chatbot oder Übersetzungsprogramme: Am besten funktionieren diese Anwendungen auf Englisch. Warum das so ist, ob sich das in Zukunft ändern wird, erklärt der Saarbrücker Computerlinguistik-Professor Dietrich Klakow.
Als deutscher Muttersprachler ist man noch relativ gut dran, sagt Dietrich Klakow, Professor für "Spoken Language Systems" an der Universität des Saarlandes. Denn die meisten IT-Sprachanwendungen funktionierten auch auf Deutsch recht gut. "Aber es stimmt, viele Systeme im Bereich der Sprachverarbeitung arbeiten nach wie vor auf Englisch am besten", bestätigt der Professor, der am Saarland Informatics Campus forscht.Ausschlaggebend dafür seien vor allem zwei Gründe: Zum einen basieren die meisten Anwendungen der computergestützten Sprachverarbeitung auf dem Maschinellen Lernen, einem Teilgebiet der Künstlichen Intelligenz. "Beim Maschinellen Lernen sagt nicht ein Programmierer dem Algorithmus ganz genau, was er zu tun hat, sondern trainiert ihn mit massenhaft Daten, aus denen der Algorithmus selbstständig lernen kann", erklärt Dietrich Klakow. Und genau hier liegt der erste Grund: Englisch ist die meistgesprochene Sprache der Welt, somit sind auch die meisten verfügbaren Trainingsdaten auf Englisch. "Zudem ist das Englische grammatikalisch vergleichsweise einfach gestrickt, weshalb Computer gut damit zurechtkommen", so Klakow.Der zweite Grund seien die Forscher selbst: "Die Wissenschaft ist ein internationales Arbeitsfeld, deshalb ist die Arbeitssprache in der Regel Englisch – auch in der Informatik. Wenn man also etwas Neues erforscht oder entwickelt, so tut man dies auf eine Weise, die für die Kolleginnen und Kollegen gut nachvollziehbar ist. Deshalb arbeiten und publizieren die meisten Forscherinnen und Forscher auf Englisch", sagt Klakow. Dies führe wiederum dazu, dass viele Anwendungen zunächst auf Englisch entwickelt würden – das erste maschinell übersetzte Sprachenpaar war Englisch-Französisch. Die erste synthetisch erzeugte Stimme war eine Software, die englische Zeitungsartikel vorgelesen hat. "Die meisten Anwendungen haben einen mehrjährigen Vorsprung auf Englisch. Und die großen europäischen Sprachen werden in der Regel zuerst nachgezogen", erläutert der Professor.Was aber ist mit kleineren Sprachen, die nur wenige Sprecher haben? "Mit Abstand die meisten Sprachen der Welt werden gar nicht unterstützt. Es gibt rund 7000 Sprachen, von denen wiederum nur rund 400 mehr als eine Million Sprecher haben – und selbst diese 400 sind nicht alle umfassend genug erforscht, um in Anwendungen mit natürlicher Sprache verwendet zu werden", sagt Klakow. Der "Google Übersetzer", der einen guten ersten Einblick in die computerlinguistisch erforschten Sprachen geben kann, unterstützt Stand Februar 2023 insgesamt 133 Sprachen auf verschiedenen Niveaustufen.Ein wesentlich schwerwiegenderes Problem als kleine Sprachen, die nicht ausreichend computerlinguistisch erforscht werden, sind sehr weit verbreitete Sprachen, die kaum oder gar nicht unterstützt werden. Denn hier gehe es ganz schnell um global-gesellschaftlich relevante Fragestellungen der digitalen Teilhabe, sagt Dietrich Klakow. "Viele afrikanische Sprachen zum Beispiel, die ohne weiteres zehn bis 50 Millionen Muttersprachler haben, können kaum oder nur sehr schlecht von Computern verarbeitet werden", sagt der Professor. Gemeinsam mit seinen Doktoranden Jesujoba Oluwadara Alabi, David Ifeoluwa Adelani und Marius Mosbach hat Dietrich Klakow deshalb eine Methode entwickelt, um bereits bestehende Sprachmodelle speichereffizient und möglichst passend auf die 17 am weitest verbreiteten afrikanischen Sprachen einzustellen. Für die Arbeit wurden er und seine Kollegen im vergangenen Oktober mit einem "Best Paper Award" der "International Conference on Computational Linguistics", einer der führenden Fachkonferenzen der Computerlinguistik, ausgezeichnet.Es wird also weiter daran gearbeitet, den Sprachhorizont der Maschinen zu erweitern. Auf die Frage, wie sich diese Sprachfähigkeiten in Zukunft entwickeln könnten, sagt Klakow: "Durch effizientere Machine-Learning-Modelle, die weniger Trainingsdaten benötigen, oder durch bessere Methoden, um Trainingsdaten künstlich erzeugen zu können, werden zukünftig sicherlich noch mehr Sprachen in ihrer maschinellen Verarbeitung auf ein ‚produktreifes‘ Niveau gehoben werden. Ich schätze, in zehn bis 15 Jahren könnten die 400 verbreitetsten Sprachen allesamt dieses Level erreicht haben." Dass jemals alle Sprachen der Welt gleich gut funktionieren werden, hält er hingegen für ausgeschlossen: "Es wird niemals genügend Trainingsdaten geben, um beispielsweise ein ‚Zulu-ChatGPT‘ zu programmieren. In dieser Hinsicht wird das Englische wahrscheinlich immer die Nase vorn haben", resümiert der Professor.Publikation: Jesujoba O. Alabi, David Ifeoluwa Adelani, Marius Mosbach, and Dietrich Klakow. 2022. Adapting Pre-trained Language Models to African Languages via Multilingual Adaptive Fine-Tuning. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4336–4349, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.Lehrstuhl: https://www.lsv.uni-saarland.de

Neueste Beiträge

DWX hakt nach: Wie stellt man Daten besonders lesbar dar?
Dass das Design von Websites maßgeblich für die Lesbarkeit der Inhalte verantwortlich ist, ist klar. Das gleiche gilt aber auch für die Aufbereitung von Daten für Berichte. Worauf besonders zu achten ist, erklären Dr. Ina Humpert und Dr. Julia Norget.
3 Minuten
27. Jun 2025
DWX hakt nach: Wie gestaltet man intuitive User Experiences?
DWX hakt nach: Wie gestaltet man intuitive User Experiences? Intuitive Bedienbarkeit klingt gut – doch wie gelingt sie in der Praxis? UX-Expertin Vicky Pirker verrät auf der Developer Week, worauf es wirklich ankommt. Hier gibt sie vorab einen Einblick in ihre Session.
4 Minuten
27. Jun 2025
„Sieh die KI als Juniorentwickler“
CTO Christian Weyer fühlt sich jung wie schon lange nicht mehr. Woran das liegt und warum er keine Angst um seinen Job hat, erzählt er im dotnetpro-Interview.
15 Minuten
27. Jun 2025
Miscellaneous

Das könnte Dich auch interessieren

UIs für Linux - Bedienoberflächen entwickeln mithilfe von C#, .NET und Avalonia
Es gibt viele UI-Frameworks für .NET, doch nur sehr wenige davon unterstützen Linux. Avalonia schafft als etabliertes Open-Source-Projekt Abhilfe.
16 Minuten
16. Jun 2025
Mythos Motivation - Teamentwicklung
Entwickler bringen Arbeitsfreude und Engagement meist schon von Haus aus mit. Diesen inneren Antrieb zu erhalten sollte für Führungskräfte im Fokus stehen.
13 Minuten
19. Jan 2017
Evolutionäres Prototyping von Business-Apps - Low Code/No Code und KI mit Power Apps
Microsoft baut Power Apps zunehmend mit Features aus, um die Low-Code-/No-Code-Welt mit der KI und der professionellen Programmierung zu verbinden.
19 Minuten
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige