Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Lesedauer 2 Min.

Praktische Ansätze zur Bereinigung von ML-Datensätzen

Um die Leistung Ihrer Machine-Learning-Modelle zu optimieren, ist eine gründliche Datenbereinigung unerlässlich.
Die Qualität der Daten ist das Herzstück erfolgreicher Machine-Learning-Modelle. Wenn Ihre Daten inkonsistent, von Ausreißern durchzogen oder mit fehlenden Werten versehen sind, kann selbst das bestoptimierte Modell nicht die gewünschten Ergebnisse liefern. Ob Sie nun mit unstrukturierten Daten arbeiten, komplexe Pipelines managen oder einfach nur versuchen, eine Vielzahl von Datensätzen zu harmonisieren – ohne saubere Daten sind Ihre ModVergleiche nahezu nutzlos. Die Frage ist: Warum sind saubere Daten so entscheidend? Der Erfolg Ihres Modells hängt ganz davon ab, wie gut die eingegebenen Daten die reale Welt widerspiegeln. Schlechte Datenqualität verzerrt die Leistungskennzahlen und erschwert einen sinnvollen Vergleich zwischen Modellen über verschiedene Experimente hinweg. Man kann sich das wie den Test zweier Motoren vorstellen, von denen einer mit kontaminiertem Kraftstoff betrieben wird – ein faires Testen ist so nicht möglich. Eine ordnungsgemäße Reinigung Ihrer Daten gewährleistet, dass Modelle nicht nur akkurat, sondern auch vergleichbar und reproduzierbar sind.Der Artikel Data Cleaning: 9 Ways to Clean Your ML Datasets stellt neun wesentliche Techniken vor, die ML-Engineers im Jahr 2024 zur Datenbereinigung verwenden. Von der Handhabung fehlender Werte mit KNN-Imputation bis hin zur Verwaltung der Automatisierung großer Pipelines mit Tools wie Apache Airflow – es werden die praktischen, getesteten Methoden zur Aufrechterhaltung der Datenqualität behandelt. Jeder Schritt hilft sicherzustellen, dass die Ergebnisse wirklich aussagekräftig sind, wenn es darum geht, die Modellleistung zu vergleichen. 

Neueste Beiträge

DWX hakt nach: Wie stellt man Daten besonders lesbar dar?
Dass das Design von Websites maßgeblich für die Lesbarkeit der Inhalte verantwortlich ist, ist klar. Das gleiche gilt aber auch für die Aufbereitung von Daten für Berichte. Worauf besonders zu achten ist, erklären Dr. Ina Humpert und Dr. Julia Norget.
3 Minuten
27. Jun 2025
DWX hakt nach: Wie gestaltet man intuitive User Experiences?
DWX hakt nach: Wie gestaltet man intuitive User Experiences? Intuitive Bedienbarkeit klingt gut – doch wie gelingt sie in der Praxis? UX-Expertin Vicky Pirker verrät auf der Developer Week, worauf es wirklich ankommt. Hier gibt sie vorab einen Einblick in ihre Session.
4 Minuten
27. Jun 2025
„Sieh die KI als Juniorentwickler“
CTO Christian Weyer fühlt sich jung wie schon lange nicht mehr. Woran das liegt und warum er keine Angst um seinen Job hat, erzählt er im dotnetpro-Interview.
15 Minuten
27. Jun 2025
Miscellaneous

Das könnte Dich auch interessieren

UIs für Linux - Bedienoberflächen entwickeln mithilfe von C#, .NET und Avalonia
Es gibt viele UI-Frameworks für .NET, doch nur sehr wenige davon unterstützen Linux. Avalonia schafft als etabliertes Open-Source-Projekt Abhilfe.
16 Minuten
16. Jun 2025
Mythos Motivation - Teamentwicklung
Entwickler bringen Arbeitsfreude und Engagement meist schon von Haus aus mit. Diesen inneren Antrieb zu erhalten sollte für Führungskräfte im Fokus stehen.
13 Minuten
19. Jan 2017
Evolutionäres Prototyping von Business-Apps - Low Code/No Code und KI mit Power Apps
Microsoft baut Power Apps zunehmend mit Features aus, um die Low-Code-/No-Code-Welt mit der KI und der professionellen Programmierung zu verbinden.
19 Minuten
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige